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ABSTRACT 6 
 7 
This research develops a machine learning model for drought prediction using the Random Forest 8 
algorithm, employing historical meteorological and soil data to deliver precise drought forecasts. 9 
Accurate drought prediction is essential for alleviating negative impacts on agriculture and water 10 
resources; however, conventional methods frequently lack precision. This study employs extensive 11 
data preprocessing, feature selection, and model training to develop a stable and interpretable 12 
predictive model. The algorithm, integrated with an interactive Streamlit application, allows 13 
stakeholders to submit data and receive real-time drought predictions. The evaluation criteria, such as 14 
accuracy, precision, and recall, demonstrate that the model successfully identifies the links between 15 
environmental variables and drought severity. The Random Forest model has robustness and 16 
interpretability, making it a significant asset for policymakers, agricultural planners, and researchers. 17 
This study also provides a user-friendly yet scientifically robust instrument for proactive drought 18 
management and highlights potential avenues for improved model precision and scalability. 19 
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1. Introduction 24 

1.1 Background and Motivation 25 

Droughts profoundly affect agriculture, water supplies, and ecosystems, frequently leading to economic losses 26 
and environmental deterioration (Y. Song et al., 2024). Conventional prediction approaches lack precision and 27 
adaptability due to the intricacy of drought patterns and the multitude of environmental elements at play (Rezaiy & 28 
Shabri, 2024). Recent breakthroughs in machine learning have facilitated enhanced drought predictions by utilizing 29 
historical meteorological and soil data to develop efficient data-driven models (Ayinla & Abdulsalam, 2024a). In the 30 
present investigation advanced machine learning algorithm is utilized to create a drought prediction system that 31 
delivers high accuracy, thereby assisting stakeholders in making decisions on water management, crop planning, and 32 
risk mitigation. 33 

1.2 Problem Definition 34 

Drought prediction is the examination of extensive historical meteorological and soil data to forecast instances 35 
of water deficiency (Koutroulis et al., 2024). The main objective of this research is to develop a predictive model 36 
that can precisely evaluate drought scores, thereby offering early warnings to alleviate negative impacts on 37 
agricultural and water resources. Drought prediction is difficult because to the intrinsic complexity and variety of 38 
meteorological patterns, soil conditions, and geographical disparities (Zhang et al., 2024). This study seeks to tackle 39 
these difficulties by utilizing a Random Forest model, capable of managing extensive datasets with multiple 40 
attributes while ensuring interpretability and robustness. This issue is delineated as a supervised learning work, 41 
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utilizing historical data to train the model for precise prediction of drought scores, ultimately aimed at facilitating 42 
proactive decision-making in drought-affected areas. 43 

1.3 Objectives and Scope 44 

The main goal is to create a precise machine learning model employing the Random Forest technique to forecast 45 
drought scores using historical weather and soil data. This project addresses both the technical sides of model 46 
development and the practical application by incorporating the model into an accessible interface using a Streamlit 47 
web application. The project includes data preparation, feature selection, model training, performance evaluation, 48 
and the development of an interactive platform allowing users to input data and receive real-time drought 49 
predictions. The project seeks to provide a scientifically rigorous and accessible tool by explicitly delineating its 50 
objectives and scope, so providing a significant resource for researchers, agricultural stakeholders, and policymakers 51 
in addressing and alleviating drought consequences. 52 

2. Literature review 53 

Various researchers have investigated on utilization of machine learning models for drought prediction (Ayinla 54 
& Abdulsalam, 2024b; Katipoğlu et al., 2024; Magallanes-Quintanar et al., 2024; TIWARI & Manthankumar P. 55 
Brahmbhatt, 2024; Tuğrul & Hinis, 2024). Katipoğlu et al. (2024) formulated a machine learning model for drought 56 
prediction by combining Artificial Neural Networks (ANN) with metaheuristic optimization methods, including 57 
Firefly Algorithm (FFA), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). The developed model 58 
predicted the Streamflow Drought Index (SDI) during hydrological droughts with a 1-month lead time in the Konya 59 
closed basin, employing lag values derived from partial autocorrelation function graphs. The PSO-ANN and FFA-60 
ANN hybrid models exhibited the greatest accuracy, with Coefficient of Determination (R²) values between 0.443 61 
and 0.931. 62 

Ayinla & Abdulsalam (2024) investigated an innovative method that integrates K-means clustering and the 63 
Gradient Boosting Algorithm (KGBA) with Principal Component Analysis (PCA) for predicting droughts. The 64 
KGBA model, employing a dataset of 2,756,796 US Drought Monitor records from 2000 to 2016, exhibited elevated 65 
precision and recall rates, especially in predicting extreme and exceptional droughts, with an overall accuracy of 66 
46%. Their model surpassed conventional methods, underscoring its potential to improve drought mitigation 67 
strategies. Tiwari & Brahmbhatt (2024) created machine learning models, specifically ANN and M5 model trees, to 68 
forecast drought indices, specifically the one-month timescale standardized precipitation index (SPI-1) and 69 
standardized precipitation evapotranspiration index (SPEI-1) for the central Gujarat region of India. The models 70 
employed a 30-year dataset (1986-2015) and were trained with the Levenberg-Marquardt technique. They 71 
demonstrated that ANN models surpassed M5 models, especially in predicting SPI-1, hence illustrated their efficacy 72 
in drought forecasting. Magallanes-Quintanar et al. (2024) established an Auto-Machine-Learning methodology 73 
employing ANN models to forecast the SPI across four regions in Zacatecas, Mexico. Climatological time-series 74 
data from 1979 to 2020 functioned as prediction factors. Their models exhibited robust predictive skills, with 75 
performance indicators such as Mean Squared Error between 0.0296 and 0.0388, Mean Absolute Error ranging from 76 
0.1214 to 0.1355, and R2 spanning 0.9342 to 0.9584, hence facilitating drought prediction. 77 

Tuğrul & Hinis (2024) developed a machine learning model for drought prediction using the SPI and various 78 
algorithms, including support vector machines (SVM), ANNs, random forest, and decision tree. The M04 model, 79 
which incorporated SPI, time steps, and delayed data, yielded the best performance. SVM demonstrated the highest 80 
accuracy both before and after applying wavelet transformation, achieving a Nash–Sutcliffe efficiency (NSE) of 81 
0.9942, root mean square error (RMSE) of 0.0764, and R2 of 0.9971. Kang & Byun (2024) introduced a multi-scale 82 
groundwater drought prediction model that employs deep learning, particularly long short-term memory (LSTM) 83 
networks. It forecasted both zonal average and point-scale values for the standardized groundwater level index (SGI) 84 
utilizing hydrometeorological variables, such as temperature, precipitation, and vapor pressure deficit. The model 85 
was evaluated on Jeju Island, with high accuracy and a Nash–Sutcliffe efficiency coefficient more than 0.9 and a 86 
RMSE below 0.3, thereby enabling efficient groundwater management procedures. Liu et al. (2024) created a hybrid 87 
hydrological-deep learning model to forecast future bivariate hydrological drought features in 179 catchments in 88 
China. They employed five bias-corrected global climate model outputs, three shared socioeconomic pathways, and 89 
a random forest model to assess meteorological influences on daily streamflow. Their model attained a Kling–Gupta 90 
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efficiency over 0.8 in 161 catchments, illustrating its efficacy in forecasting drought length and severity, hence 91 
tackling the intricacies of hydrological drought projections amid climate change. 92 

Xu et al. (2024) introduced a machine learning stacking ensemble method for drought prediction, employing 93 
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Climate Data Record 94 
(PERSIANN-CDR), MODIS remote sensing products, and climate zoning data to assess the SPEI-3 across nine sub-95 
regions in China. They determined that the CatBoost Regressor is the most proficient meta-model, with R2 values of 96 
0.9065 and 0.8218 in the eastern and western regions, respectively, indicating strong seasonal drought monitoring 97 
efficacy. Duong et al. (2024) constructed Machine Learning models, namely Gradient Boosting and Extreme 98 
Gradient Boosting (XGBoost), to forecast the SPEI in the Mekong Delta. Their models integrated diverse climate 99 
elements using data from 11 meteorological sites spanning 1990 to 2022. The findings demonstrated that XGBoost 100 
much surpasses conventional forecasting techniques, attaining R² values ranging from 0.90 to 0.94 for 1-month 101 
predictions, thus improving drought prediction precision and facilitating superior drought management approaches. 102 

Thus, the reviewed literature emphasizes the progression of drought prediction techniques, transitioning from 103 
conventional statistical methods to sophisticated machine learning models. Conventional methods offer basic 104 
insights into drought patterns but frequently lack the adaptability and precision required to tackle the intricacies of 105 
contemporary climate data. Tree-based machine learning models, such as Random Forest, have shown significant 106 
enhancements in predicted accuracy and robustness by effectively handling non-linear relationships and numerous 107 
input features. Nonetheless, deficiencies persist in model interpretability, scalability, and real-time application, 108 
which the present research seeks to rectify. This research also utilizes lessons from prior studies to enhance existing 109 
information and create a comprehensive drought prediction system that combines predictive efficacy with practical 110 
applicability, paving the way for more accurate and effective drought forecasts. 111 

3. Methodology 112 

3.1 Data Collection 113 

The methodology for acquiring pertinent data to train the drought prediction model is discussed in this 114 
section. Precise drought forecasting depends on extensive datasets that encompass the several elements affecting 115 
drought conditions, including precipitation, temperature, soil moisture, and humidity. This study utilized historical 116 
meteorological and soil data obtained from publicly accessible datasets, including the U.S. drought and 117 
meteorological dataset available on Kaggle.  118 

Metadata of the meteorological dataset is Minimum Wind Speed at 10 Meters (m/s) is WS10M_MIN, 119 
Specific Humidity at 2 Meters (g/kg) is QV2M, Temperature Range at 2 Meters (C) is T2M_RANGE, Wind Speed 120 
at 10 Meters (m/s) is WS10M, Temperature at 2 Meters (C) is T2M, Minimum Wind Speed at 50 Meters (m/s) is 121 
WS50M_MIN, Maximum Temperature at 2 Meters (C) is T2M_MAX, Wind Speed at 50 Meters (m/s) is WS50M, 122 
Earth Skin Temperature (C) is TS, Wind Speed Range at 50 Meters (m/s) is WS50M_RANGE, Maximum Wind 123 
Speed at 50 Meters (m/s) is WS50M_MAX, Maximum Wind Speed at 10 Meters (m/s) is WS10M_MAX, Wind 124 
Speed Range at 10 Meters (m/s) is WS10M_RANGE, Surface Pressure (kPa) is PS, Dew/Frost Point at 2 Meters (C) 125 
is T2MDEW, Minimum Temperature at 2 Meters (C) is T2M_MIN, Wet Bulb Temperature at 2 Meters (C) is 126 
T2MWET, and Precipitation (mm day-1) is PRECTOT. Metadata for soil data is US county FIPS code is fips, 127 
Latitude is lat, Longitude is lon, Median elevation (meters) is elevation, 0 % ≤ slope ≤ 0.5 % is slope1, 0.5 % ≤ 128 
slope ≤ 2 % is slope 2, 2 % ≤ slope ≤ 5 % is slope3, 5 % ≤ slope ≤ 10 % is slope 4, 10 % ≤ slope ≤ 15 % is slope5, 129 
15 % ≤ slope ≤ 30 % is slope6.   130 

This dataset was chosen for its comprehensive coverage of pertinent features and its temporal depth, 131 
facilitating a thorough investigation of drought changes throughout time. The data collection method entailed 132 
filtering and structuring the raw data into a format appropriate for machine learning applications. The data quality 133 
and relevance directly influence the model's predicted accuracy and efficacy in practical applications. 134 

3.2 Data Preprocessing 135 

Data preparation is crucial in machine learning, as it ensures that the dataset is clean, consistent, and 136 
organized to improve the model's learning efficacy. This section outlines the essential procedures done to prepare 137 
the raw data for efficient model training. Initially, metrological and soil datasets are merged. The project 138 
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commenced with pre-processing, which involved addressing missing values and eliminating extraneous features to 139 
minimize data noise. Subsequently, data normalization and scaling were implemented to standardize variables with 140 
disparate ranges, such as temperature and precipitation, ensuring comparability and preventing any one feature from 141 
unduly affecting the model using MinMaxScaler.  142 

Furthermore, category data was encoded, converting qualitative information into a numerical format 143 
appropriate for the Random Forest method. The pre-processing processes optimized the dataset for performance, 144 
enabling the model to concentrate on the most significant patterns in the data, hence enhancing accuracy and 145 
reliability in drought prediction. 146 

3.3 Model Development 147 

Choosing an appropriate model is essential for obtaining trustworthy predictions, particularly due to the 148 
complexity of drought patterns affected by multiple environmental factors. Random Forest was selected for its 149 
resilience, capacity to manage extensive datasets with numerous features, and its efficacy in identifying non-linear 150 
relationships within the data. This ensemble technique generates many decision trees during training, with each tree 151 
casting a vote on the result, so improving overall model stability and mitigating the risk of overfitting. Furthermore, 152 
Random Forest offers feature relevance scores, enabling the identification of variables that most significantly 153 
influence drought conditions. This interpretability aids in enhancing the model and offers insights into 154 
environmental factors that influence drought severity. Consequently, the use of Random Forest corresponds with the 155 
project's aims of precision, resilience, and clarity in forecasting drought ratings. 156 

To train the model, 'score', 'fips', 'date' columns are dropped. The target column is ‘score’. The model 157 
training process entailed partitioning the dataset into training and validation subsets to facilitate an impartial 158 
evaluation of the model's predicted performance. The ‘test_size’ is kept as 0.2 and ‘random_state’ as 0. The Random 159 
Forest model was subsequently trained on the training set, where it acquired the ability to discern patterns in 160 
historical meteorological and soil data linked to drought events. Hyperparameter tuning was conducted to refine the 161 
model's parameters, including the number of trees and maximum depth, in order to attain an equilibrium between 162 
model complexity and predictive accuracy. Random forest hyper-parameter ‘n_estimators’ is 10. The Random 163 
Forest machine learning model is built using these settings and saved in .pkl file format. 164 

The feature importance plot, derived from Gini importance (or mean decrease in impurity), as shown in 165 
Figure 1 illustrates the relative significance of different features utilized by the Random Forest model for drought 166 
prediction. Features with elevated Gini relevance exert a more substantial influence on the model's decisions. In this 167 
diagram: 168 

1. W500M_MAX is the most significant feature, suggesting that this variable, presumably associated with 169 
wind speed at a 500 m elevation, is vital for predicting drought conditions in the dataset. 170 

2. Additional parameters, including T2M_MAX, T2M_MIN, W510M_MAX, and W510M_MIN, are also 171 
significantly relevant. The temperature and wind-related variables indicate that weather conditions, 172 
specifically temperature and wind patterns, are crucial predictors in the model. 173 

3. Elevation and latitude are fairly significant, suggesting that geographic features affect drought forecasts. 174 
4. Land cover classifications, including URB_LAND and FOR_LAND, also influence the forecasts, but to a 175 

diminished degree. This indicates that land use and vegetation type could influence drought susceptibility. 176 
5. Numerous more characteristics, such as slopes, particular land cover types, and specific soil properties 177 

(SQ1, SQ2, etc.), exhibit diminished relevance scores. These influences the model but possess diminished 178 
individual significance. 179 
The predominance of W500M_MAX indicates a significant correlation between drought conditions and 180 

high-altitude wind patterns, which may be beneficial in comprehending environmental impacts on drought. This 181 
feature importance analysis aids in enhancing the model by concentrating on critical predictors to augment model 182 
interpretability and performance potential. 183 
 184 
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 185 
Figure 1. Feature importance plot 186 

3.4 Evaluation Metrics 187 

The predictions are saved in ‘predictions.csv’ file. The ‘score’ column consists of 6 classes, i.e. 0, 1, 2, 3, 4, 5 for 188 
six levels of drought. The model underwent validation with the hold-out validation set, employing metrics including 189 
accuracy, precision, and recall to evaluate its performance upon completion of training. The validation measures 190 
offer insight into the model's generalizability, ensuring it works effectively on historical data while demonstrating 191 
robust predicting capability for future drought circumstances. In the present study, accuracy score of 0.768, 192 
precision score of 0.75, and recall of 0.768 was obtained for test dataset. 193 
 Figure 2 displays a confusion matrix that compares the true labels (actual values) with the expected labels 194 
(predictions) generated by the model. Each cell in the matrix denotes the frequency with which a specific true label 195 
was predicted as a particular label. Here is an analysis of the matrix: 196 
 197 

 The diagonal cells (from top-left to bottom-right) indicate the number of accurate predictions, wherein the 198 
predicted label corresponds with the true label. Elevated values in these cells signify superior performance. 199 
The model accurately predicted 134,073 instances for label "0" and 16,650 instances for label "1", among 200 
others. 201 
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 Off-diagonal cells indicate misclassifications, wherein the projected label diverges from the actual label. 202 
Specifically, there were 3,383 occurrences in which the actual label was "0" while the model predicted "1", 203 
and 18,819 occurrences where the actual label was "1" while the model predicted "0". 204 

 Class-specific performance can be deduced by analyzing each row. For example: 205 
o Label "0" exhibits a substantial correct count (134,073), indicating strong predictive accuracy for 206 

this category. 207 
o Label "1" exhibits several misclassifications, with numerous instances erroneously projected as 208 

"0" (18,819), suggesting potential challenges in differentiating between these two categories. 209 
o The color coding indicates the magnitude of each cell's value. Darker hues indicate lesser 210 

quantities, whilst brighter hues signify bigger quantities. This visual depiction facilitates the rapid 211 
identification of the model's strengths and flaws across several labels. 212 

 The confusion matrix elucidates the model's performance across each class and identifies areas of 213 
misclassification. 214 

 215 

 216 
Figure 2. Confusion Matrix 217 

Figure 3 illustrates a predicted score distribution plot, depicting the frequency of expected scores across 218 
various classes (0 to 5) derived from a model's output. This style of figure elucidates the distribution of model 219 
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predictions, aiding in the comprehension of which classes the model predominantly predicts. The following are the 220 
principal observations: 221 

 Class 0 Dominance: The predominant number of forecasts is classified as class 0, reaching 300,000 in total. 222 
This indicates that the model predominantly favors class 0, likely due to class 0 being the most abundant in 223 
the dataset or the model's tendency to overfit to it. This may suggest a skewed dataset in which class 0 is 224 
disproportionately represented in the training data. 225 

 Classes 1, 2, and 3 exhibit markedly lower counts relative to class 0, signifying that these predictions are 226 
less prevalent. Classes 4 and 5 exhibit an even lower number of predictions, with class 5 demonstrating the 227 
minimal count overall. This distribution indicates that the model may have difficulty predicting these 228 
higher classes or that these classes are inadequately represented. 229 

 The smooth curve superimposed on the bars illustrates the density estimation, so elucidating the 230 
distribution pattern more distinctly. It demonstrates a bias towards lower socioeconomic strata, diminishing 231 
as we ascend to higher classes. 232 

 This plot reveals a significant concentration of predictions in the lower class, especially class 0, with 233 
comparatively few occurrences in the higher classes. This distribution may result from class imbalance 234 
within the dataset or model bias. Resolving this issue may require the application of strategies such as class 235 
weighting, resampling, or model optimization to enhance prediction distribution throughout all classes. 236 

 237 
Figure 3. Predicted score distribution 238 

4. System Implementation 239 

4.1 Data Preprocessing script 240 

This section details the creation and operation of a custom Python script designed to automate data 241 
preparation for the drought prediction model. This script was developed to manage substantial quantities of raw 242 
meteorological and soil data through the consistent and efficient execution of fundamental preprocessing 243 
procedures. The script commences by loading data files, thereafter cleaning and filtering the data by rectifying 244 
missing values and eliminating superfluous characteristics that may introduce noise. It also executes data 245 
normalization and scaling, ensuring that numerical features such as temperature, precipitation, and soil moisture are 246 
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standardized to a uniform scale. Categorical variables are encoded to ensure interoperability with the machine 247 
learning model. The processed data is subsequently stored in a structured format, prepared for model training and 248 
evaluation. The automation of these stages by the preprocessing script optimizes the data preparation pipeline, 249 
minimizes human error, and improves the reproducibility of results, which is essential for the system's reliability and 250 
applicability in future endeavors. 251 

4.2 Model Training process 252 

This section outlines the procedures for training the Random Forest model using the preprocessed drought 253 
dataset. The procedure commences with the ingestion of the sanitized and organized data, subsequently partitioning 254 
it into training and testing subsets to enable a rigorous assessment. To enhance the model's predictive performance, 255 
hyperparameter tuning is conducted by modifying parameters such the number of trees, maximum tree depth, and 256 
minimum samples necessary for node splitting. This tuning seeks to equilibrate model complexity with performance, 257 
mitigating overfitting and improving generalizability. During training, the Random Forest algorithm constructs 258 
several decision trees, each trained on random subsets of the data, so forming an ensemble that generates predictions 259 
via a majority voting process. This ensemble method capitalizes on the advantages of individual trees while 260 
mitigating vulnerability to noise and volatility in the data. Upon completion of training, the model is preserved in a 261 
serialized manner, rendering it suitable for deployment in the drought prediction application. This systematic 262 
training procedure guarantees the model's precision, efficacy, and adaptability for practical prediction assignments. 263 

4.3 Streamlit App for user interaction and predictions 264 

This section outlines the creation of an interactive web application enabling users to interact with the 265 
drought prediction model in real time. This application, developed with the Streamlit framework, offers a user-266 
friendly interface for uploading test datasets and obtaining prompt drought predictions. The application is 267 
engineered for accessibility, allowing even non-technical users to utilize the model's predictive functionalities. The 268 
application preprocesses the data for compatibility, subsequently inputting it into the trained Random Forest model, 269 
which generates drought scores and visual representations of forecast patterns and essential performance indicators 270 
upon uploading a dataset. These representations offer consumers a lucid comprehension of the model's predictions 271 
and the fundamental elements influencing them. This Streamlit program functions as a conduit between the intricate 272 
predictive model and a practical, user-friendly interface, enabling users such as farmers, academics, and 273 
policymakers to make informed decisions based on real-time drought forecasts. 274 

1. Result and Analysis 275 

5.1 Model evaluation results 276 

This section presents the performance metrics and analysis of the Random Forest model following its 277 
training and testing on the drought dataset. The model's efficacy was assessed by critical metrics including accuracy, 278 
precision, and recall, offering a thorough perspective on its predictive quality. The elevated value of evaluation 279 
metrics demonstrate that the model effectively elucidates the correlations between meteorological and edaphic 280 
factors and drought intensity. Furthermore, the F1-score was employed to evaluate the equilibrium between 281 
precision and recall, guaranteeing that the model exhibits constant performance throughout varying degrees of 282 
drought severity. The results confirm the model's robustness and accuracy, establishing it as a dependable 283 
instrument for drought prediction. This assessment underscores the model's strengths while offering insights into 284 
future enhancements, including the refinement of features or the exploration of alternative models to further increase 285 
predictive accuracy. 286 

5.2 Visualizations of predictions and metrics as displayed in the Streamlit app 287 

The Streamlit application offers many charts and graphs that illustrate projected drought scores, facilitating users' 288 
comprehension of the data at a glance. Line graphs depict drought patterns over time, demonstrating the variation of 289 
expected scores in relation to changing weather and soil conditions. Bar charts and heatmaps are incorporated to 290 
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illustrate essential performance measures, including accuracy, precision, and recall, providing users with insights 291 
into the model's dependability. These visualizations enable users to compare actual and expected values and analyze 292 
factors affecting drought severity, providing a clear insight into the model's decision-making process. The 293 
application enables users—be they researchers, agricultural planners, or policymakers—to make informed, data-294 
driven decisions with assurance by rendering predictions and measurements clearly available. 295 

6. Discussion 296 

6.1 Analysis of the model's strengths and weaknesses 297 

The Random Forest model's principal strength is in its robustness in managing extensive datasets with 298 
numerous features, allowing it to discern intricate correlations between environmental variables and drought 299 
severity. The ensemble characteristic of Random Forest mitigates the danger of overfitting, enhancing the model's 300 
generalizability to novel data. Moreover, its feature importance functionality provides transparency by identifying 301 
the variables that most significantly affect drought conditions, serving as a valuable resource for those seeking 302 
insights into environmental factors. Nevertheless, the model possesses many limits, particularly its substantial 303 
computational expense, which may result in diminished performance with big datasets. This constraint may impact 304 
its efficacy in real-time applications. Moreover, although Random Forest demonstrates commendable performance 305 
on the existing dataset, its accuracy may be enhanced by exploring alternative algorithms, such as gradient boosting 306 
or deep learning methods, particularly in scenarios where intricate variable interactions are critical. The present 307 
research highlights the model's dependability and clarity while pinpointing opportunities for improvement to further 308 
augment its predicted precision and efficacy. 309 

6.2 Comparison with other potential models  310 

Gradient boosting machines, such as XGBoost, and deep learning methodologies present viable alternatives 311 
owing to their ability to identify intricate, non-linear correlations in extensive datasets (Niazkar et al., 2024; C. E. 312 
Song et al., 2024). Gradient boosting models frequently yield superior accuracy compared to Random Forest by 313 
systematically rectifying errors; however, they necessitate more meticulous tuning and exhibit increased 314 
susceptibility to overfitting. Deep learning models, including neural networks, may improve predictive accuracy by 315 
identifying complex patterns and connections among variables; nevertheless, they require extensive datasets and 316 
significant processing resources, which may limit their applicability for real-time predictions (Arash Tashakkori et 317 
al., 2024; Reddy et al., 2024). Furthermore, support vector machines (SVM) and k-nearest neighbors (k-NN) are 318 
evaluated, however their efficacy may diminish with high-dimensional data characteristic of drought datasets 319 
(Choesang et al., 2023; Simarmata et al., 2024). Although Random Forest provides a compromise between 320 
interpretability and accuracy, its comparison with alternative methods highlights the trade-offs in model complexity, 321 
computational efficiency, and interpretability, informing future investigations into models most appropriate for 322 
implementing drought prediction across various contexts. 323 

6.3 Limitations of the current approach and possible improvements 324 

A constraint is the Random Forest model's computing requirements, especially during training, which may 325 
impede scalability for extensive datasets or real-time applications. Furthermore, although Random Forest achieves 326 
excellent accuracy, its dependence on historical data may hinder its ability to adjust to swift changes in climatic 327 
patterns induced by global warming, thus compromising prediction reliability. The model also lacks the capability 328 
for spatiotemporal analysis, which would enable it to consider spatial changes in drought patterns. Future research 329 
could include sophisticated approaches, such as deep learning, particularly recurrent neural networks (RNNs) or 330 
convolutional neural networks (CNNs), which are adept at processing sequential and spatial data to address these 331 
constraints. Incorporating supplementary real-time data sources, including satellite photography and remote sensing 332 
data, may improve the model's adaptability to climatic fluctuations. Finally, establishing an automated pipeline for 333 
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hyperparameter optimization and model updates will enhance performance consistency and flexibility, hence 334 
rendering the system more resilient for prolonged deployment in varied environmental settings. 335 

7. Conclusion 336 

The Random Forest-based machine learning model developed in the present study demonstrates efficacy in 337 
drought prediction, providing significant accuracy and user-friendliness for stakeholders in drought-impacted 338 
regions. The model delivers timely drought forecasts by analyzing historical meteorological and soil data, so 339 
facilitating data-driven decisions for resource management and risk mitigation. While Random Forest provides 340 
interpretability and resilience, it has problems like high computational requirements and susceptibility to data 341 
imbalance. Subsequent study ought to investigate sophisticated methods such as gradient boosting and deep learning 342 
to augment model accuracy and scalability. Furthermore, incorporating real-time data sources, such as satellite 343 
imagery, along with spatiotemporal modeling tools, might enhance adaptation to changing climatic patterns. This 344 
model establishes a basis for effective and precise drought prediction, overcoming significant limitations in current 345 
methodologies and emphasizing opportunities for ongoing advancement. 346 
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